The Rsocialdata package: Handling survey data in R
Emmanuel Rousseaux?®, Danilo Bolano* and Gilbert Ritschard®

* NCCR LIVES
Institute for Demographic and Life Course Studies
Uniwversity of Geneva, Switzerland
emmanuel.rousseaux@unige.ch

XXVII IUSSP International Population Conference
26 to 31 August 2013 — Busan, Republic of Korea

Document version: 1.0.1

Abstract. In this article we introduce the Rsocialdata package. This package provides re-
searchers in social sciences with high-level tools for handling survey data in R. As a key feature
it allows to store, document and share complex survey data, as panel data and network data.
It provides tools for efficiently exploring and recoding data, allowing researchers to proceed
more quickly to the task of analysis. Finally, the software puts forward a new methodology
for dealing with statistical methods. Adopting a programming syntax especially designed
for scientists in social sciences and presenting outputs in PDF files with a “ready-to-publish”
formatting, this methodology aims at focusing more quickly on the analysis. Furthermore,
printing all parameters used to fine-tune a given statistical method together with the corre-
sponding results facilitates reproducible research. After an introduction to the design of the
software, we present a full user guide with various examples based on the Swiss Household
Panel data, allowing the reader to become autonomous with the software.

1 Introduction

Population studies strongly rely on survey data. In order to face with the increasing complexity and
rigor of the current research studies, the structure of the databases has become in the last decades more
and more complex, as longitudinal data, network data, spatial data, etc. The extensiveness volumes of
structured data complicate the task of both documenting and manipulating data. This is the reason why
there is a need for specific tools to assist the user in handling these complex data. The Rsocialdata software
is an effort in this direction. It aims at providing a framework for handling survey data in R, especially
network and biographical data. More precisely, the software aims at facilitating the management of
survey data by providing researchers in social sciences with high-level tools for storing, documenting,
exploring, recoding and sharing survey data in a secure and efficient way. This initiative, conducted
within the NCCR LIVES project, targets mainly life course studies and especially data sets collected
and used within the NCCR LIVES project. Thus, the current roadmap includes the development of the
framework to support (1) cross-sectional data, (2) network data with a specific handling of biographical
data of people cited in the network of each respondent, and (3) panel data organized in successive waves.

The software comes in the form of an R package. R (R Core Team, 2012) is a powerful multi-platform
and open-source (so free of charge) statistical tool which is increasingly used in social sciences as an
alternative to classical commercial software (like SPSS, SAS, Stata). Most of the recent state-of-the-art
methods are available in R and many of them exist exclusively in R. This is especially the case for the
newest tools for life course analysis (e.g. TraMineR for life course sequence analysis (Gabadinho et al.,
2011), 1tm package for latent class model (Rizopoulos, 2006)). Moreover, working in R allows benefiting
from the numerous statistical procedures already optimized in R and taking advantages of R’s powerful
graphic features.

emmanuel.rousseaux@unige.ch

On a general point of view the Rsocialdata software follows three goals:

1. Providing an efficient framework for storing and documenting complex survey data. A key feature
of the software is its capability to store data together with the survey design. The data and the
user manual describing the data are merged together. Among the different features provided we
can mention the possibility of assigning short and long labels to variables and variable values, to
declare user-defined types of missing values and to account for cross-sectional and longitudinal
weights. Relevant metadata can also be stored such as the target population, the sampling design,
information about the organization releasing the data, user license type, etc. Since all information
is stored within the data object, the software offers the possibility to generate a summary of the
whole data base and the information provided. The summary gives for each variable its long label,
the percent of valid cases and basic descriptive statistics. This summary can be directly exported
as a PDF file and it can be used as an own user-manual of the data base providing particularly
useful information to detect errors and to share data with others.

2. Saving time. Preparing data for a study is often a very time consuming and tedious task. The
Rsocialdata has been designed to to help researchers in this task reducing the time spent on data
processing allowing them to proceed more quickly to the actual (task of) analysis.

For example, the package provides a search function allowing to explore data and retrieve relevant
variables, which is especially usefull on huge and multi-dimensional databases. It also provides
efficient tools for recoding categorical and quantitative variables and handling missing values. For
example the users can easily turn a missing value as a valid case and vice-versa. Furthermore, for
some classical (statistical) methods, the software provides front-ends especially designed for social
science scholars.These front-ends facilitate researchers daily work within the R environment. As a
key feature, the software performs systematic data consistency checks to ensure that data were not
altered during data preprocessing operation. When filtering out cases and sample weights are used,
the software also process automatic checks to prevent the loss of representativeness with respect to
control variables defined by the user.

3. Facilitating reproductible research. Demographic and sociologic questions are generally complex and
require a lot of work to be understood. Reproductible research, consisting in attaching sufficient
information about data analysis performed so that the work can be recreated, is a helpful method-
ology when studying social dynamics. Having the possibility to recreate an experiment made by
other researchers, or by oneself several months ago, gives the possibility to verify, better understand,
and continued the work already done. The Rsocialdata software works in this direction by tracing
operations made on data, so that the user can find back the operations she performed. Further,
for each method provided by the package, results can be printed in a PDF file which also provides
the settings used for getting the results. Further, outputs are printed with a "ready-to-publish"
formatting, allowing to quickly focus on the intepretation.

Furthermore, the Rsocialdata package is one of the two tools of the Rscocialdata project. The second

tools is a website, whose address is http://www.rsocialdata.unige.ch. This platform allows to explore
survey databases that are available in the Rsocialdata file format, and to retrieve them easily in a R
environment. This platform follows two goals: First, it aims at providing a full database search engine,
allowing researchers to easily find databases which turn out relevant for the analyze of their research
questions. For each database available, an overview and a detailed summary are provided as well as
summary measures (frequency tables, plots, etc.) for each variable the database contains. Secondly, the
platform aims at encouraging the dissemination of survey databases by facilitating the process of making
them available to the scientific community. Indeed, an important part of survey databases are lost after
the end of the research project whithin which they were collected, often because the task of making them
available is generally tedious. As a consequence, a such centralized and unified system will minimize the
painful work of searching data from different sources, importing them from various file types or working
with databases lacking of documentation.
This initiative is free and open to everybody who would like to participate, either helping to carefully
document and prepare existing databases, or sharing your own survey data to the scientific community.
Databases are securely stored (access restricted to authorized users, data transfers encrypted in SSL) and
the authors can manage the access of their data via a license agreement process. This license agreement
process allows the database owner to decide who has access to the data and for which purpose.

http://www.rsocialdata.unige.ch

In Section 2 we discuss the limitations of native R objects for handling survey data and we present
some R packages that provide tools to overcome these limitations. In Section 3 we briefly introduce the
design of the package. Section 4 introduces some of the main functionalities of the Rsocialdata toolbox
in the form of a user guide. It provides all the material needed to the reader to be autonomous with the
software and to start working on its own data. Several illustrations of the tools available for handling
panel data are provided. The guide uses data from the Swiss Household Panel (SHP) (Voorpostel et al.,
2012). It is a yearly panel study following a random sample of households in Switzerland over time
interviewing all household members. We conclude in Section 5 and present some future works. We
conclude in Section 5

2 Literature review

The R software does not provide a native framework for survey data managment. The native structure
to store data, the data.frame object, doesn’t allow to store metadata of a survey like short/long labels
for values and variables. Missing values are limited to only one type, which make impossible to describe
the different types of missing values that can occur when we study individuals. The quality of a survey
stands on its representativeness of the population studied and often weights are needed to correct for non-
responses bias. Although a lot of statistical methods in R are able to deal with weights, the data.frame
object doesn’t provide a specific weigths handling. Socia network analysis is a powerful tool for studying
population. It allows to study the social relationship and how the lives of individuals are linked together.
Network data are generally difficult to handle, especially when we deal with demographic data not only
for each respondant but also for each indivdual within the network of the respondent. The data.frame
object offers no other choice than storing data in a flat structure, a 2D array, which doesn’t take into
account the structure of the network. This leads the user to have a lot of data processing steps to perform
before having data ready for analysis. Multiplying the number of steps increases the risk of mistake and
can lead to data alteration. Finally, for longitudinal studies, the data.frame object doesn’t provide a
specific structure for storing a variable measured several times accross time. The 2D array structure offers
no other choice than dealing with each measurement separately instead of manipulating the variable as
a whole. Once again, a such framework leads the user to multiply operations for example repeating the
same operation on each wave.

Furthermore, no data consistency accross time check are performed, for example to be aware if the
same coding is used accross waves.
There are two packages in R providing a framework for the management of survey data. Both packages
are released on the CRAN. The surveydata package (De Vries, 2012) simply extends the data.frame
class to allow storing variable labels. The memisc package (Elff, 2013) offers a more sophisticated class
allowing to store a label for both values and variables, and allows definable missing values. The package
also provides several tools for dealing with survey data, as for example production of codebooks, recoding
tools, and can display nice tables of regression model estimates. One choice would have been to start
from this package to build the Rsocialdata package. However, integrate a native handling of weights,
automatic data consistency checks and a specific structure for efficiently storing network data and panel
data would lead to rewrite most classes the package provides.

3 Software design

The software is developed as a standard R package. We opted for an object-oriented programming, adopt-
ing the S4 framework (R Development Core Team, 2012) provided by R. This framework specifically fits
our needs. First of all, it allows to define methods, i.e. functions with the same name but with a different
behavior depending on the objects submitted to them. Dispatching is performed according to each of its
arguments. This is useful for limiting the number of function names and allows to group functions having
the same behavior but which apply for different classes. As a consequense, this considerably simplify the
programming syntax for the user. Secondly, the S4 framework allows to perform systematic validy checks
on objects. This is particularly useful for implementing our data consistency checks.

3.1 Cross-sectional data management framework

The main data structure defined in the Rsocialdata package is the Rsocialdata object. This S4 object
contains the following attributes:

e variables: a list containing all the variables resulting of the survey.
e name: a character which may contain the name of the database, or short label.

description : a character for storing the long label of the database.

row.names: a vector of names for the rows.

weighting: a character, the name of the variable to use to weights data.

checkvars: a character vector, listing variable names on which the user want to performed repre-
sentativness checks.

spatial: a structured list specifying localization variables and how they have to be used.

infos: a structured list where are specified the metadata of the survey, and serving at storing
information about the tracing of operations processed on the object.

warnings: a structured list where are specified information the user should take into accounts.
Rsocialdata.version: the version of the structure of the object.

Data coming from respondents are stored in the variable attribute. This attribute is a list of Variable
object. With this metodology, each question of the survey has to be coded in one or more Variable
object(s). The Variable object is designed as follow:

codes: a numeric vector, containing the answers of the respondants, numerically coded.

e values: an object of class Values, which is a dictionary matching numeric codes to short and long

labels, and specifying if a value has to be considered as a missing value or a valid case.

e name: a character, naming the variable, or short label. This label is mandatory.
e description : a character, the long label of the variable.

infos: a structured list where other meta-information about the variable are specified, as its
translation in different languages for example, and where are stored information about the tracing
of operations processed on the object, especially recoding operations. It also stores the initial
distribution of the variable which is used for data representativness checks.

warnings: a structured list where are specified information the user should take into account.
Variable.version

The Variable object is the basic structure for storing the answers of respondents. However, at this
stage, no measurement has been specified. Besides, the Variable class cannot be instanciated: the class
is called a virtual class and it is only as a model for creating more specific objects. Specific structures
have been designed to handle variable measurement. All of these structures inherits of the Variable
class. Figure 1 presents the differents structures implemented and their inheritance links.

Variable (
/ \
Categorical (V Quantitative (V
/N
Ordered (Nominal Scale Timestamp
\ /
Ordinal Binary Ordinal Nominal Weighting

Figure 1: Class diagramme of objects inheriting of the Variable class. Virtual classes are specified by the
symbol (V). Commands for creating objects are given in orange.

Only the terminal structures can be instanciated. The list below presents builders for each of these
classes:

e svar: builder for creating a variable with a scale measurement.
e cvar: builder for creating a variable with a categorical measurement, either a binary or a nominal

measurement.

e ovar: builder for creating a variable with an ordinal measurement.
e tvar: builder for creating a variable with a timestamp measurement

e wvar: builder for creating a variable with a weighting measurement. We define a weighting variable
as a scale variables where values are positive or null, and no missing values allowed.

For R users used accomodated to native R data structures, here is the corresponding between data
structures of the Rsocialdata package and R native data structures:

MeasureVariable objects should be used instead of numeric vector objects.
CategoricalVariable objects should be used instead of factor objects.
OrdinalVariable objects should be used instead of ordered factor objects.
Rsocialdata objects should be used instead of data.frame objects.

Note that there is no corresponding for a R "character" vector. Indeed, a character vector doesn’t have
a sociological meaning, and if a such variable were submitted to a Variable builed, the result would be
CategoricalVariable.

4 Working with the Rsocialdata package: a user guide

In this Section we introduced some functionnalities of the Rsocialdata package. Table 4 summarizes these
functionnalies.

4.1 Installing and invoking the package

The toolbox is hosted on the R-Forge platform. The R-Forge is designed for the development of R
packages and R-related softwares. The project is accessible at the following URL:

https://r-forge.r-project.org/projects/dataset/

The original name of the package was Dataset (Rousseaux et al., 2013). Indeed, we wanted the package
able to store any kind of dataset. But last developments focused especially on social and survey data, and
new functionnalities, as for example the systematic use of non-response weights, do not make sense for
other kind of data. Then, we now prefer the name of Rsocialdata for releasing next versions. Currently,
for installing the package please use the following command:

install.packages(

pkgs = 'Dataset’,

repos = 'http://r-forge.r-project.org'’
)

Once the package is installed, you can load it in your R workspace with the 1ibrary function:

library(Dataset)

4.2 Documenting a database

In this Section we presents how a database can be documented. However, Rsocialdata doesn’t provide
tools for collecting and entering data. The methodologz we advice is to use the GNU PSPP software
(Stover, 2010), a freeware multi-plateform, importing the database in Rsocialdata in the same manner as
for a SPSS file.
For the following examples we will use data from the Swiss Household Panel (SHP) (Voorpostel et al.,
2012).

We first define the paths were data are stored:

datadir.all <- "~/Documents/shp/shp-oct2012/SHP-Data-WA-SPSS/"
datadir.w2011 <- "~/Documents/shp/shp-oct2012/SHP-Data-W1-W13-SPSS/W13_2011/"

For loading data from an SPSS database, we use the command get.spss.file as follow:

shp.all <- get.spss.file(
file = 'SHP_MP.sav',
datadir = datadir.all,
name = 'SHP all MP',
description = 'Swiss Household Panel, release October 2013, Master personal database'

https://r-forge.r-project.org/projects/dataset/

In this example we have loaded the Master personal database. We specify a name for the Rsocialdata
object and a description. These two last arguments are optional but we strongly recommend to specify
them to facilitate database managment when several data bases are loaded in the workspace. The
datadir argument is also optional, we can actually specify the path by collapsing it with the name of the
file in the file argument. However we recommend to specify it separately: if the path changes, we will
update only one time the path in our script instead of updating it each time we use the get.spss.file
command. When coding categorical variables a tacit convention is to use positive codes for valid cases and
negative codes for missing values. The get.spss.file command makes this assumption and will use this
criteria to detect missing values. Variable with an ordinal measurement and timestamp variables have
to be declared explicitly in the arguments of the get.spss.file function. Without these declarations,
an ordinal variable will be stored as a nominal variable, and a timestamp variable as a scale variable.
On huge databases declaring these measurements is time-consuming. A better choice would be to use
a meta-information file where all these declarations already exist for importing them in the software.
As Rsocialdata aims at handling longitudinal and network data, we plan to use the DDI specification
(Vardigan et al., 2008) to correctly describe data. The structure for handling metadata from a DDI 2.5
XML file is currently under development. Once the database is loaded in the workspace you can generate
a codebook with the exportPDF method:

exportPDF (shp.all)

Figure 2 is a screenshot of the first page of the codebook generated. This cover page gives us meta-
information about the database. We can recognize the name and the description we have previously
defined. The number of variables as well as the number of each type of variable are shown. The number
of individuals takes into account the sample weights. If weights are not specified each individual will
have a weight of 1 and then the number of individuals is equal to the number of rows. The percentage
of missing values is given by the ratio between the total number of missings values in the database and
the total number of cells. The weighting variable is the variable we want to use to weigths individuals.
Control variables are instead the variables on which we want to assess potential losses of representativness.
Weighting and control variables will be discuss in Section 4.3.2. If a localization information has been
collected in the survey, it can be explicitly specified. To guarantee correctness of information reported,
all numeric information are computed on the fly. On the right side basic information can be specified
as authors name, contact information, licence and citation information. It could be particulary useful
when we want to share the data with other scholars. The Population field allows the administrator of
the database to describe the population concerned by the survey.

Summeary of the SHP all MP datasat

Generated by the R Dataset package

Overview

* Name: SHP all MP * Author(s):

* Description: Swiss Household Pand, rdease October 2013, Master * Contact e-mail:
personal database License:

* Number of variables: 72 (1 binaries, 0 ordinals, 40 nominals, 31 * Release date:
scales, 0 timestamps, 0 weightings) « Citation:

* Number of individuals: 22976 (for 22976 rows) * Website:

¢ Percent of missing values: 60.65 % * Population:

* Weighting variable: none.
* Control variable(s): none
« Spatial variable: none

Figure 2: Codebook for the shp.all database, page 1.

Figure 3 presents the second page of the codebook. On the left panel, a table shows the number of
variables order by the percentage of valid cases. In our example, 3 variables have no one missing values
and 7 variables have at least 60% of valid cases. This information is particularly useful when we set up
a sub-database for a specific social study. Indeed, many multivariate analyses automatically filter out
individuals where a missing value occurs, at least, on one variable. If variables contain a high percent
of missing values, we might have a loss of representativness on the sample due to the large number of
individuals filtered out. The graphical representation of this table (on the right side) allows to immediatly

identify if the variables we are interested in have a sufficient number of valid casesto minimize loss of
representativness in such algorithms.

Distribution of variables by percent of valid cases

Number of variables by percent of valid cases

Percents of valid cases Number of variables
0 460 g
10 295
20 261 .
30 240 % s
40 230 g
50 169]
60 151 2
70 28
80 24 g
0 23
100 13 -

T
0 20 40 60 80 100

Percentage of valid cases

Figure 3: Codebook for the shp.all database, page 2.

Figure 4 presents the third page of the codebook. This page summarizes the settings used for generating
the variable summary for which the first page is presented in Figure 5. As we don’t specify these settings
when running the command for generating the codebook, default settings are used. Thresholds on the
variable and value label lenghts can be specified in order to avoid the codebook gets to heavy and to limit
information to the most important one. As some categorical variables might have a high number of levels,
e.g. variables storing countries or jobs, it is possible to specify a threshold on the minimum frequency
a level has to satisfy for being reported in the codebook. Furthermore, only valid cases are reported,
not missing values. Valid cases are listed in decreasing order, increasing order, or without sorting. This
order can be specified independently for nominal and ordinal variables, as for ordinal variables it could
be chose to preserve the natural order.

Configuration

» Variable descriptions are cutted above 300 characters.

« Valid case descriptions are cutted above 40 characters.

» For categorical variables, valid cases are cutted when under 0.5 % of representativity.
¢ For nominal variables, valid cases are listed in decreasing order.

* For ordinal variables, valid cases are listed in decreasing order.

Figure 4: Codebook for the shp.all database, page 3.

Figure 5 presents the fourth page of the codebook which correspond to the first page of the variable
summary Section. This Section provides detailed information about each variable stored in the database
and it is the core of the codebook. Variables are grouped according to their measurement. For binary
variables the codebook displays the column index of the variable in the database, its name and long label,
the number of valid cases it contains, the corresponding percent of missing values, and the distribution
of its levels. For nominal variables the number of classes is also displayed. In the column ’distributions’
a triple-dot mark means that some classes are omitted because they not satisfy the minimal frequency
threshold. For instance, for the variable filter11, only 2 classes are displayed but 4 classes exist, whereas
for the status99 the 3 classes are displayed. For scales variables basic statistic indicators as min, max,
mean and standard deviation are provided.

Variable summary

Binary variables

Variable Description N NA (%) Distribution (%)
7 sex Sex 22976 0 woman (50.71), man (49.29)

Table 1: Binary variables summary

Nominal variables

Variable Description N NA (%) Classes Distribution (%)
1 filter1l Identification of the survey 22976 0 4 SHP_ 1 (sample 1999) (67.73), SHP_ 11 (sample 2004) (32.27), ...
9 status99 Type of interviews completed: grid, proxy, 12931 43.7 3 individual questionnaire (33.94), proxy questionnaire (11.48), grid only
personal (10.85)
10 mp99 Reason for not responding to ind. Ques- 12885 43.9 13 Interviewed (33.94), PROXY (11.48), Person cannot be reached (2.16), Re-
tionnaire fusal: not interested (1.93), Refusal: no time (1.83), Refusal: opposed to
surveys as a matter- (1.24), No time immediately, appointment made (0.89),
Age or health related problems (0.73), Refusal: other motives (0.71), Lan-
guage problem (doesn’t speak neither- (0.54), ...
11 rxa99 Reason for proxy 85 99.6 12
14 status00 Type of interviews completed: grid, proxy, 11678 49.2 3 individual questionnaire (30.78), proxy questionnaire (10.36), grid only (9.68)
personal
15 rnp00 Reason for not responding to ind. Ques- 11548 49.7 13 Interviewed (30.78), PROXY (10.36), Refusal: not interested (2.52), Person
tionnaire cannot be reached (1.51), Refusal: opposed to surveys as a matter- (1.43),
Refusal: no time (0.86), Refusal: other motives (0.80), Age or health related
problems (0.61), Language problem (doesn’t speak neither- (0.51), ...
16 rxa00 Reason for proxy 119 99.5 12
19 statusOl Type of interviews completed: grid, proxy, 11116 51.6 3 individual questionnaire (28.73), grid only (10.19), proxy questionnaire (9.46)
personal
20 rnp01 Reason for not responding to ind. Ques- 10326 55.1 13 Interviewed (28.73), PROXY (9.46), Refusal: not interested (1.83), Person
tionnaire cannot be reached (1.05), Refusal: no time (0.66), Refusal: other motives
(0.61), Age or health related problems (0.61), Person is absent or phoneisn't
answeri- (0.60), Refusal: opposed to surveys as a matter- (0.53), ...
21 rxa0l Reason for proxy 93 99.6 12
24 status02 Type of interviews completed: grid, proxy, 9537 585 3 individual questionnaire (24.81), proxy questionnaire (8.64), grid only (8.06)
personal
25 rnp02 Reason for not responding to ind. Ques- 8936 61.1 13 Interviewed (24.81), PROXY (8.64), Refusal: not interested (1.19), No time
tionnaire immediately, appointment made (0.82), Refusal: other motives (0.71), Re-
fusal: no time (0.62), Person cannot be reached (0.57), ...
26 rxa02 Reason for proxy 163 99.3 12

Figure 5: Codebook for the shp.all database, page 4.

4.3 Preparing data ready for analysis

We now load the personal and household databases of the Swiss Housel Panel wave 2011:

shp.w2011p <- get.spss.file(
file = 'SHP11_P_USER.sav',
datadir = datadir.w2011,
name = 'SHP wave 2011 personal',

description = 'Swiss Household Panel, release October 2013, wave 2011, personal database'

shp.w2011h <- get.spss.file(
file = 'SHP11_H_USER.sav',
datadir = datadir.w2011,
name = 'SHP wave 2011 household',

description = 'Swiss Household Panel, release October 2013, wave 2011, household database'

Our different databases are loaded in the workspace. We often want to merge them in order to have all
information on our individuals in the same database. The task is to match all variable values for each
individuals. The operation can be performed using the merge function which follows the same syntax
than the native R merge function for data.frame objects. We start by merging the Master Personal
database with the Household database, then we merge them with the Personal database:

shp <- merge(shp.all, shp.w2011h, by = "idhous11")
shp <- merge(shp, shp.w2011p, by = "idpers")

After merging we have 11178 rows and 730 variables in our shp database.

nrow (shp)

[1] 11178
ncol (shp)

[1] 730

Let’s suppose we are interested in getting some information about the impact on health of being
employed and participating to an association. The first stage of our analysis is to select relevant variables
for this study. As the database contains a large number of variables the task might be not easy. To
facilitate this task the Rsocialdata software provides a function to search across the entire database
to retrieve variables containing one of several keywords in their short or long labels. Thus, retrieving
variables on the topic of health is easily done with:

health.var <- contains("health", shp)

Description
h11i76a Financial help: health insurance
plicO1l Health status
pl1c02 Satisfaction with health status
pl11c03 Improvement in health: Last 12 months
plicO4a Health problems: Back problems: Last 4 weeks
pllicOba Health problems: Weakness, weariness: Last 4 weeks
plicO6a Health problems: Sleeping problems: Last 4 weeks
plicO7a Health problems: Headaches: Last 4 weeks
pl11c08 Health impediment in everyday activities: Extension
plici9a Chronic illness or long-term health problem
pllicll Number of days affected by health problems: Last 12 months
plipb54 Public expenses: Health
x11c05 Assessment of health status
x11c06 Suffering from health problems
x11c07 Cause of health problems
x11c09 Days of suffering from health problems: Days

Variables related to health are displayed. Further, the output of the command stored in the health.var
object is itself a Rsocialdata object. Thus, we can generated a codebook for this sub-database and
easily choose the variable best fitting our problematic, according to its meaning and its characteristics
(percentage of valid cases, distribution, etc.).

exportPDF (health.var)
In this example we have chosen to work with the health status, which is in the Swiss Household Panel a
measure of self-reported health. We now repeat the operation to look at variables related to association

membership:

association.var <- contains("association'", shp)

Description
pl1in40 Associational membership: Sports or leisure
plindil Associational membership: Culture
plind2 Associational membership: Syndicate
plin4d3 Associational membership: Political Party
plind4 Associational membership: Protection of the environment
plin4db Associational membership: Charitable organisation
p1inb50 Associational membership: Religious organisation or group
plinbl Associational membership: Local, parents' or women's association
plinb2 Associational membership: Other interest groups

exportPDF (association.var)

For this study we decide to work with the variable measuring membership to sport or leisure association.
The variable has three levels: Not a member, Passive member and Active member and contains about
68% of valid cases. Then we look at a variable related to the working status of respondents. Sometimes

only one keyword is not enough for retrieving variables we want, as some words can match to many vari-
ables. The contains method supports several keywords and can use them in a disjonctive or conjonctive
way by specifying the and argument.

work.var <- contains(c("work", '"status"), shp, and = TRUE)

Description
wstatll Working status

We proceed in the same way for retrieving variables on the sex, age and canton of residence of the
respondants. Finally we look for the variable allowing to correctly weight our data in order to make our

sample representative of the target population:

weights.var <- contains("weight", shp)

Description
whilltlp PSMI-PSMII transversal household weight inflating to size of CH-population
whiltls PSMI-PSMII transversal household weight keeping sample size
plicd6 Weight in kg
wplltip PSMI-PSMII transversal individual weight inflating to size of CH-population
wplitils PSMI-PSMII transversal individual weight keeping sample size
wplllplp PSMI longitudinal individual weight inflating to size of CH-population in 1999
wplllpls PSMI longitudinal individual weight keeping sample size
wpllllp PSMI-PSMII longitudinal individual weight inflating to size of CH-population in 2004
wplllis PSMI-PSMII longitudinal individual weight keeping sample size

We retrieve the relevant variables for our study. We now summarize them in a vector and then extract
our study sample from the whole database:

study.variables <- c(
'wplitis',
'p11cOl’,
'agell’,
'sex11’',
'cantonll’,
'p11n40',
'wstatill'
)
study <- shp[, study.variables]

We can quickly check the variables existing in our study database with the alldescriptions command:

alldescriptions (study)

#it Description
cantonll Canton of residence
sexl1l Sex
agell Age in year of interview
plicO1 Health status
wstatll Working status
pl1in40 Associational membership: Sports or leisure

wplltls PSMI-PSMII transversal individual weight keeping sample size

4.3.1 Renaming variables and variable values

Variables names in a database are generally coded. When we work on a sub-database for a specific study
it is often more confortable to rename variables. This can be done with the rename command as follow:

study <- rename(study,

'wplltls' = 'weights',
'pl1cO01' = 'health',
'agell' = 'age',
'sex11' = 'sex',

10

'cantonll' = 'canton',
'p11n40' = 'association',
'wstatll' = 'work.stat'

)
We can quickly check that variables have been renamed correctly:

alldescriptions (study)

Description
canton Canton of residence
sex Sex
age Age in year of interview
health Health status
work.stat Working status
association Associational membership: Sports or leisure
weights PSMI-PSMII transversal individual weight keeping sample size

The rename command can also be used for rename variables values. For example, the variable health
contains the five following classes:

valids (study$health)
very well well so, so (average) not very well not well at all
1 2 3 4 5

One may think that the labels so, so (average) and not well at all are too long to fit in tables
when presenting results of analysis. To solve this problem we can rename them in a shorter form, for
example so, so and poor. This renaming is only for demonstration purpose, in a real study we should
make sure that the new labels preserve the meaning of the question. That is, we should be able to justify
that with the new labels respondents would have answered in the same manner.

study$health <- rename(study$health,

'so, so (average)' = 'so, so',
'not well at all' = 'poor'
)
valids(study$health)
very well well so, so not very well poor
1 2 3 4 5

4.3.2 Setting weights and control variables

The Rsocialdata software offers a native handling of weights. By native we means that the structure for
handling weights is integrated inside the object storing data. Furthermore, the user has to specify only
once the weigthing variable to use. Once weights are specified, they are automatically accounted for by
all the analyses provided by the software. Let’s start by looking at what returns the software when asking
for weights on our study sample:

weights (study)

warning: mno weights defined, equiponderation is used
number of missings: 0 (0 /)

Description: I'"'!empty!!!

[1] 1111111111111 11

First of all, the software alerts that we didn’t specify weights and informs the user that a weight of 1
will be affected to each individual. Then the software creates the weights with no missing values and
an empty description. The output is a replication of the value 1 of the same length as the number of
rows. For more lisibility we only display the 15 first values. The nindividual function computes the
total number of respondent taking into account the sample weights. As currently each individual has a
weight of 1, the number of individuals is equal to the number of row:

11

nindividual (study)

#4# [1] 11178

We now set the weights. First, we have to convert our weighting variable, which currently is a
ScaleVariable, to a WeightingVariable. This operation aims at checking that our variable satisfy
criteras to be used as a weighting variable: this is a ScaleVariable, with all values positive or null, and
no missing value.

study$weights <- wvar(study$weights)

Then we can register the weighting variable in the Rsocialdata object.
Now we ask for weights on our study sample:

weights(study)
Description: PSMI-PSMII transversal individual weight keeping sample size

[1] 0.5896 0.4899 1.1283 0.8478 0.5340 0.4377 0.1437 0.3112 0.0000 1.1858
[11] 0.0000 0.0000 0.5248 0.4899 0.8251

In this output we also printed only the first 15 values. Now, The nindividual functions returns the
number of individuals taking weights into account.

nindividual (study)

[1]1 7459

After setting weights we can check the control variables, i.e. variables on which we want test of represen-
tativness to the initial population were performed. In this example we decide to perform checks on the
variables sex and work.stat.

checkvars(study) <- c("sex", "work.stat")

Now, each time the Rsocialdata object is altered, checks on these variables will be performed. As an
example, let’s select only people being active member in a sport or leisure association:

shp.association <- subset(study, association == "Active member")

=> control on sex: warning, p-value < 0.05

man are overrepresented

woman are underrepresented

=> control on work.stat: warning, p-value < 0.05
active occupied are overrepresented

unemployed, mot in labor force are underrepresented

From the output we observe that the statistical tests on control variables are not rejected. The
tests consist in checking the p-value of the Pearson Chi-squared standardized residual for each class
of each control variable. Here, we can conclude that deciding to work only on people who are active
members in a sport or leisure association, we will have care of the the significant oversampling of men
(and undersampling of women), the oversampling of "active occupied" individuals and undersampling of
"not in labor force people". There is no significant loss of representativeness for group "passive member",
which is the third class of the "association.assoc" variable, as nothing was reported on this class.

4.3.3 Computing frequency tables

The software is able to display detailed information about frequencies. In the example below we look at
frequencies of the health variable:

frequencies("health", study)

12

Coding Missing Label N N total Percent Percent (all) Percent total

1 1 very well 1428 19.16 19.15
2 2 well 4811 64.52 64.50
3 3 so, so 1037 13.92 13.91
4 4 not very well 157 2.11 2.11
5 B poor 21 7456 0.29 0.29 99.97
##t 7 -2 X no answer 2 100.00 0.03
6 -1 x does not know 0 0.00 0.00
8 -3 x 1inapplicable 0 0.00 0.00
9 -7 x filter error 0 0.00 0.00
10 -8 X other error 0 2 0.00 0.00 0.03
#it 11 7459 100

The column Coding shows the coding used in the variable. The column missing indicates wether the
value has to be interpreted as a missing value or a valid case. The column N counts the number of
occurrence of each value. The column N total counts the total number of occurrence respectively for
valid cases and missing values, and display the total count. Note that due to the use of weights theses
counts are not integers, but they were rounded for a better lisibility. As a consequence, they may be
some differences in single counts and aggregated counts. The Percent column displays respectively the
percentage of each valid case among all valid cases and the percentage of each missing value among all
missing values. The column Percent (all) displays percentages for each value among all values. Finally,
the column Percent total indicates respectively the total percentage of valid cases and missing values.
The frequencies method can also be used on ScaleVariable objects. For such objects, values are
cutted in about 10 ranges with equal width. This allow to appreciate the density of the variable. Here is
an example with the variable age.

frequencies("age", study)
number of missings: 6 (0.05 /)

Coding Missing Label N N total Percent Percent (all) Percent total
1 1 [0,9.7] 0 0.00 0.00
2 2 (9.7,19.4] 592 7.95 7.95
3 3 (19.4,29.1] 1066 14.30 14.30
4 4 (29.1,38.8] 990 13.27 13.27
5 5 (38.8,48.5] 1477 19.81 19.81
6 6 (48.5,58.2] 1245 16.70 16.70
7 7 (68.2,67.9] 926 12.42 12.42
8 8 (67.9,77.6] 716 9.60 9.60
9 9 (77.6,87.3] 394 5.29 5.29
10 10 (87.3,97] 48 7459 0.65 0.65 100.00
11 -1 x does not know 0 0.00 0.00
12 -2 X no answer 0 0.00 0.00
13 -3 x 1inapplicable 0 0.00 0.00
14 -7 x filter error 0 0.00 0.00
15 -8 x other error 0 0 0.00 0.00 0.00
16 7459 100

Like most outputs provided by the software, frequency tables can be exported in a PDF file with a
nice formatting, or can be included directly in an article as we do below:

Coding Missing Label N N total Percent Percent (all) Percent total

1 very well 1428 19.16 19.15

2 well 4811 64.52 64.50

3 S0, SO 1037 13.92 13.91

4 not very well 157 2.11 2.11

) poor 21 7456 0.29 0.29 99.97

-2 X no answer 2 100.00 0.03

-1 X does not know 0 0.00 0.00

-3 X inapplicable 0 0.00 0.00

-7 X filter error 0 0.00 0.00

-8 X other error 0 2 0.00 0.00 0.03
7459 100

13

4.3.4 Recoding variables

The package provide an easy method for merging levels of a categorical variable. Here an example with
the health variable. We want to merge levels have codes 1 and 2 together, and 3 to 5 together:

study$health.2 <- recode(

study$health,
'well' = 1:2,
'poor' = 3:5

)

number of missings: 3587 (32.09 /)

Operation completed successfully.

Here 1s the allocation of the rows in the different classes.

#i#

#it well poor
very well 1500

well 4926

it so, so 0 1015

not very well 0
poor 0

After performing the recoding operation, the function displays how classes were allocated in the new
variable. This lets the possibility to the user to control the result. For having more information, it is also
possible to ask for detailed frequencies.

frequencies("health.2", study)

Coding Missing

1 0

##t 2 1

##t 4 -2 X
3 -1 X
5 -3 X
6 -7 X
#it 7 -8 b d
8

no answer
does not know
inapplicable
filter error
other error

Label N N total Percent Percent (all) Percent total

well 6239
poor 1216

SO O O ON

7456

2
7459

83.

16.
100.
.00
.00
.00
.00

O O O O

68
32
00

83.
16.
.03
.00
.00
.00
.00

O O O O O

66
32

99.97

0.03
100

The package also provides a method for converting a ScaleVariable to a CategoricalVariable. It
follows the same syntax than the native R cut function, but with the difference that there is no need to
specify minimal and maximal boundarys. Indeed, if nothing is specified, the method will automatically
compute the min and the max. In the following example we decide to create 3 classes by breaking the

variable at ages 30 and 65:

study$age.3 <- cut(
study$age,
breaks = c(30,65)
)

number of missings: 6 (0.05 J)
Operation completed successfully.

Here 1s the allocation of the rows in the different classes.

The cut method also shows the allocation of values in the new classes, but as the age variable contains
98 distinct values the output takes to much place, so we don’t display it. However we can have a look at
the detailed frequencies of the new variable:

14

frequencies("age.3", study)

Coding Missing Label N N total Percent Percent (all) Percent total
1 1 [0,30] 1775 23.80 23.80
2 2 (30,65] 4325 57.99 57.99
3 3 (65,97] 1358 7459 18.21 18.21 100.00
4 -1 x does not know 0 0.00 0.00
5 =2 X no answer 0 0.00 0.00
6 -3 x 1inapplicable 0 0.00 0.00
7 -7 x filter error 0 0.00 0.00
8 -8 x other error 0 0 0.00 0.00 0.00
9 7459 100

4.4 Statistical Analysis with the Rsocialdata package

As of the main aim of the Rsocialdata software is to provide an efficient framework for increasing re-
searcher’s time available to concentrate on their research question when running into analysis, and facil-
itating reproductible research, we put forward a general methodology for building an analysis tool. The
four points a statistical tool provided by the Rsocialdata software has to satisfy are:

1. The syntax used has to be a direct transposition of what the researchers want to do. User has to
focus on their research question and not on programming-related problems.

2. The algorithm has to check wether a loss of representativness occured. In several multivariate
analysis methods, individuals with missings values are filtered out before running the analysis.
This can be led to a lost of representativness on one or more variable. When this case occurs we
think the user has to be alerted of the nature of the data alteration to be able to correctly interpret
results of the analysis.

3. The method has to provide an export option of the outputs of the analysis with the following con-
straints: (1) the export generated as a PDF file, (2) exhaustive details about settings and parame-
ters used have to be specified, (3) results are printed with a readable-formatting preferably with a
ready-to-publish presentation.

4. Qutputs generated by the analysis can be exported in a TSV (tab-separated values) file. This allows
the user to easily reuse data for publication purpose, for complementary analysis in another software,
or share results with other scholars.

Some statistical analysis tools hava been already developed according to this methodology: a bivariate
analysis toolbox, some decision tree methods, and a logistic regression method.

4.4.1 Univariate analysis

The package extends classical univariate descriptive statistic methods for taking weights into account.
Methods provided are: min, max, mode, mean, standard devition and variance.

4.4.2 Bivariate analysis

The package provides an extensive list of bivariate analysis methods, especially bivariate association mea-
sures with their statistical significance. All these methods are integrated within the same function, called
bivan. The bivan function is able to perform contingency tables (observed and expected) and a series
of association measures as the Pearson’s Chi-squared, the Cramer’s v (Cramer, 1971), the Tschuprow ¢
(Tschuprow, 1919), the Goodmand & Kruskal’s 7 (Goodman and Kruskal, 1954), the Theil’s u (Theil,
1970) and the Somer’s d (Somers, 1962). Statistical sigificance were computed using formulas demon-
strated in Ritschard et al. (1996). All results take into account the sample weights. Here an example of
bivariate analysis output, the health is the target variable, and 4 explicative variables are tested:

bivan(
health.2 7 sex + age.3 + association + work.stat,
study

)

15

Unlike SPSS that provides association measures only in the form of separated tables for each covariate,
the package provides a synthetic view of the analysis performed. In addition, the outputs are formatted
in a way that it is easy to integrate it in a research publication

chi2 cramer.v gk.tau.sqrt somer.d
sex 23.83 *¥** (.06 *** 0.06 *** (.04 ***
age.3 273.95 *** (.19 *** 0.19 *** (.13 ***

association 85.84 *¥** (.11 *** 0.11 *** 0.08 ***
work.stat 232.88 *¥*¥* () 18 ¥** 0.18 *** 0.14 ***

Table 1: Bivariate analysis with the self-reported health as dependend variable. Legend: *** < 0.001, **
< 0.01, * < 0.05, + < 0.1

4.4.3 Tree-based methods

The Rsocialdata package also provides nice front-ends to two classification tree methods: CHAID (Kass,
1980) (package CHAID, The FoRt Student Project Team (2009)) and CART (Breiman et al., 1984) (package
rpart, Therneau et al. (2012)). These methods are very useful for detecting interactions between variables
and thus getting more insight about sociological dependences between social determinants. Then, these
interactions can be statisticaly testing with a confirmatory analysis, a regression model for example. Here
is an example of syntax for computing a tree:

treel <- tree.learn.chaid(
formula = health.2 ™ sex + age.3 + association + work.stat,

data = study,
control = tree.control(max.height=2)

plot(treel)

Node 1 (n = 7448), split: age.3

[J) 0.8
§ 0.4
/ e 0 \
[0,30] (30|,65] (65,97]
Node 2 (n = 1775), split: work Ntade 5 (n = 4315), split: workNtade 8 (n = 1358), split: work.stat
% — 0.8 % 0.8 g 0.8
8 — 0.4 g 0.4 g 0.4
0 0 0
/N
ive occupied, nunemployedrce unemployed, not in labactive occupienot in labor force

/ \ / \

Node 3 (n = 1§9N]oge 4(n= ?&pdf 6(n= 3_6{2\1@@3 7(n= GIQMpge 9(n= 11709):!310 (n= 11179)
© °© © © © ©
= 2 2 2 2 2
— 0.8 — 0.8 — 0.8 — 0.8 — 0.8 — 0.8
— 0.6 — 0.6 — 0.6 — 0.6 — 0.6 — 0.6
— 0.4 — 0.4 — 0.4 — 0.4 — 0.4 — 0.4
. — 0.2 . — 0.2 . — 0.2 . 0.2 . — 0.2 . 0.2
S, oM, i, N, 2, S,

16

4.4.4 Logistic regression

A front-end for a binary logistic regression method is also provided, called reglog. The fucntion simply
needs the formula of the model and the specification of the target class of the endogenous variable. If
the endogenous variable is not a binary variable, a recoding will be performed to create a binary variable
with the target supplied having the value 1, and all other classes recoded to 0. This avoid the user to
waste time in recoding the variable. Furthermore, the method is able to compute nested models with its
argument nested. The user can also specify reference classes for each variables. By default, the contrast
'indicator’ is used. Here is an example of syntax for computing a logistic regression with the reglog
function:

reglog(
formula = health.2 ~
nested = list(
~ association,
~ work.stat

sex + age.3,

De
target = 'poor',
reference = list(
'association' = 'Not a member',
'age.3' = '[0,30]"
)’
data =
)

study

The method prints results in the R console, and can also be exported in a PDF file, or integrated in an
article as shown below:

Model 1 Model 2 Model 3

sexwoman 1.321 *** 1,254 *** 1145 *

age.3(30,65] 3.113 *** 2,094 *¥* 3 468 ***
age.3(65,97] 5.946 *** 5635 *¥** 3 508 ***
associationActive member 0.579 *** (.595 ***
associationPassive member 0.618 *** (.619 ***
work.statunemployed 2.460 ***
work.statnot in labor force 2.393 ***
(Intercept) 0.056 *** (0.071 *** (.054 ***

Table 2: Estimated coefficients (odds ratios) , *** < 0.001, ** < 0.01, * < 0.05, + < 0.1,” = NA

Model 1 Model 2 Model 3
Deviance 6317.61 6259.56 6147.26
Deviance HO 6626.53 6626.53 6626.53
Model Chi2 308.92 *** 366.97 *** 479,27 ***
Model DF 3.00 5.00 7.00
Block Chi2 308.92 **¥* 58,05 *** 112.30 ***
Block DF 3.00 2.00 2.00
R2 Cox-Snell 0.04 0.05 0.06
R2 Nagelkerke 0.07 0.08 0.11
N parameters 4.00 6.00 8.00
AIC 6520.87 6468.36 6354.56
BIC 7223.78 7190.42 7071.45
N 7454.00 7454.00 7454.00

Table 3: Quality measures , *** < 0.001, ** < 0.01, * < 0.05, + < 0.1,” = NA

17

4.5 Dealing with panel data

Basically, storing panel data means storing repeated cross-sectional data. In the Rsocialdata package, the
data structure for handling panel data is the pRsocialdata class. This class inherits of the Rsocialdata
object: to work efficiently on longitudinal data, all waves are merged in only one Rsocialdata object.
However, the pRsocialdata object stores separately metadata of each wave. So, it is always possible to
rebuild the original Rsocialdata object for a specific wave.

An holistic perspective of the life course has become more and more relevant over the last years. It
means to consider the life trajectory as a whole unit of analysis. With the pRsocialdata structure the user
can directly extract whole trajectories from the panel data without having to bother with extracting the
same variable from each wave. The user can extract a whole sequence in a single step simply specifying
'.." in place of, for example, the two year digits in the variable names. Furthermore, the software
automatically checks if each variable has the same missing data pattern across years. Likewise, the user
can recode or merge some values, turn a missing value into a valid case with just one command for all
the waves.

In our example we will use the waves from 2004 to 2011 of the Swiss Household panel. First of all,
we have to create a new object merging the different waves:

shp0411 <- get.spss.file(
waves = c('SHPO4_P_USER.sav', 'SHPO5_P_USER.sav', 'SHPO6_P_USER.sav','SHPO7_P_USER.sav'
'SHP08_P_USER.sav', 'SHP09_P_USER.sav','SHP10_P_USER.sav','SHP11_P_USER.sav'),
datadir = datadir,
name = 'SHP waves 2004 to 2011, personal',
description = 'SHP, release October 2013, waves 2004 to 2011, personal database'
)

Then we focus on the self-reported health measured over time.

shp0411 <- panelvar(
'health..' = c('p04c01', 'p05c01', 'p06cO1', 'p07cO1", 'p08cO1', 'p09cOl’,
'p10cO1', 'pl1cOl'),
data = shp0411

The package automatically check if the variable health.. has the same numbered codes, range value
and value label in all the waves. Also a check on the type of variables (scale, nominal, ordinal, etc.) is
performed. These checks are a warranty that your key variable is consistently defined.

Often, variable names change accross waves. For example a variable named sex during first waves
is named gender in the following one. In this case you have to define and add the “panel variable” by
hand by calling the panelvar function. But if the database follows a strict naming convention, as the
Swiss Household Panel does, you can automatically create all the trajectories existing in the database by
giving the code identifying each wave to the get.spss.file function, as shown in following example :

waves = c(
'04'="SHP04_P_USER.sav','05'="'SHPO5_P_USER.sav','06'='SHPO6_P_USER.sav',
'07'="'SHPO7_P_USER.sav', '08'='SHPO8_P_USER.sav','09'='SHP10_P_USER.sav',
'10'="'SHP10_P_USER.sav','11'='SHP11_P_USER.sav'

)

Once we have define our variables, we use the wp1111s variable to correctly balance our sample for
non-response:

description(shp0411$wpi1l1is)

#it wplllis
"PSMI-PSMII longitudinal individual weight keeping sample size"

shp.study$shp0411 <- wvar (shp0411$wplilis)
weighting(shp0411) <- "wplllis"

18

Now assume that we want to recode, in all waves, the ’health’ variable in 3 states instead of its 5
original states. We can perform this operation easily with same recode function applied on the new
variable:

shpO0411$health.. <- recode(
shpO411$health. .,

'well' = 1:2,
'poor' = 3,
'very poor' = 4:5

The package also provides a method for exporting a trajectory as a sequence object ready to be
analyzed with the TraMineR package (Gabadinho et al., 2011). This package, developed at the Institute
for Demographic and Life Course Studies (IDEMO) at the University of Geneva (Switzerland) is intended
for mining, describing and visualizing sequential data. We have to distinguish between two types of
sequential data: state sequences and event sequences. In state sequences we mainly are interested in the
duration and the timing in a life course. In the event sequences, the focus is mainly on the order in which
events occur. Indeed, an event is something that occurs at a certain time point and provokes a changing
in the state. For instance, “ending a job” is an event, and “being jobless” is the subsequent state. In the
Rsocialdata package, with the command exportSEQ, the user can easily create either a state sequence or
a event sequence simply using the option type:

shp0411.health.seq <- exportSEQ(
x = 'health..',
data = shp0411,
type = 'state'

)

Then, we can use the TraMineR graphic capabilities for rendering our state sequence. Figure 6 renders
our health trajectories in a chronogram. A chronogram displays the cross-sectional distributions of the
variable at each time, allowing to observe distribution changes over time and to compare the distributions
among groups. In Figure 6 we observe that with time the proportion of people in the state well decreases.

[0,30] (30,65]
o o _
PR = o
3 3
o X < @
B o — o
= N
1] n
c 9] c g _
o © S
Q
% < £ <
2 S S S
g E
oo =
g o g ©
L o L o
o r—Tt T T T T T 1 c” T T T T T T 1
2004 2006 2008 2010 2004 2006 2008 2010
(65,80] (80,89]
S o _
o -
S -
g @ 2 o
8 ° o °
£ o | < o |
g o E o
o S <
g o] g S
2 =
~ o NN}
g °] g <]
L o =
o o T T T T T T 1
2004 2006 2008 2010 2004 2006 2008 2010

W verypoor [l well
B poor

Figure 6: Chronogram of health trajectories by age groups.

19

As the chronogram plot renders cross-sectional views of the data, it doesn’t render individual trajec-
tories. There are several ways to render individual trajectories in TraMineR. To illustrate the exportSEQ
function, we will use Biirgin’s parallel coordinate plot for sequence data (Biirgin et al., 2012), which has
been designed to visualize event sequences. We first export the health trajectory as an event sequence:

shp0411.health.seq <- exportSEQ(
x = 'health..',
data = shp0411,
type = 'event',
event.type = 'state'

)

The event.type parameter specifies how to create the events. One option is to consider existing
states, i.e. very poor, poor and well, as start events. An other option is to consider state transitions
between the different existing states. This is done by setting the option event.type = 'transition' in
the previous call. In this case the events would be well>poor, poor>very poor and so on.

[0,30] (30,65]
colored: 70.5% colored: 68.6%
well — well 4 =
poor - poor -
very poor very poor
T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 1 2 3 456 7 8
Position Position
(65,80] (80,89]
colored: 60.2% colored: 61.9%
well well —
poor - poor
very poor very poor
T T T T T T T T T T T T T T T
1 2 3 456 7 8 1 2 3 4 5 6 7
Position Position

Figure 7: Parallel coordinate plot of health trajectories by age groups, with a highlight of the 60% most
frequent sequences.

As you can see in the parallel coordinate plot shown in Figure 7, we are only interested in the
sequencing of the events, i.e. in the order in which events occur. The duration of being in a certain
state is ignored. In this graphic each unique trajectory is plotted, and the thickness of a line accounts
for the frequency of the corresponding trajectory. We also used a filter to highlight only most frequents
trajectories. Note that the shape formed made up by the hidden trajectories (in grey) allows to asses
the diversity of the remaining trajectories. The plot shows that the youngest cohorts are more likely to
stay in good health (green box) or if there is a worsening in the health conditions (from well to poor),
they later move back to the state well. On the opposite, health trajectories are less stable for the oldest
cohorts.

20

4.6 Export methods

An important strength of the Rsocialdata package is its ability to export its object in various formats.
Indeed, the main goal of the Rsocialdata package is to help social data analysts in their daily activities and
writing reports and publications is one of the main tasks. In order to save time, the package comes with
a series of command to export most of the outputs with a “ready-to-publish” formatting. The following
formats are supported: PDF, INTEX, HTML, and DOCX (using the Microsoft Office Open XML Format).
Note that for DOCX documents the feature is currently in beta testing and not released yet.
Furthermore, we don’t want to confine the user in the Rsocialdata framework. R is a modular software
which provides a huge number of methods, developed by help of thousands of contributors. Although
the package provides a lot of useful tools, we don’t want to limit the user to use other R function.
For this point the package provides the exportR command which export a Rsocialdata object to its
nearest equivalent in R. For example a Rsocialdata database will be coerce to a data.frame object,
a ScaleVariable object will be coerce to a numeric, and a CategoricalVariable will be coerce to a
factor. Further, it can happen that there is no method allowing to do the analysis we need in R, and
we need to use another software to do the job. For this purpose the package provide the exportTSV
function, which export an Rsocialdata object in a Tab-separated-value file which can be read by most of
other statistical softwares.

Function Description

Data exploration

description Return the description database/variable

alldescriptions Provide the name and label for all variables of the database

contains Query the database to retrieve variables whose description matches the
keywords

weighting Set/Get the name of the variable used to weight a database

weights Return the weights

nindividual Give the true number of cases taking weights into account

frequencies Display the frequency table or the density of a variable

Recoding

recode Recode levels of a categorical variable (cross-sectional or panel data)

cut Turn a scale variable to an ordinal variable (cross-sectional or panel data)

as.valid Switch missing values in valid cases

as.missing Switch valid cases in missing values

checkvars Specify variables to use for controlling the representativeness when fil-
tering out cases

Analysis

bivan Bivariate analysis providing different measures of association

tree.learn.chaid
tree.learn.cart

Growth a classification tree using CHAID algorithm
Growth a classification tree using CART algorithm

reglog Logistic regression method

Ezxport

exportR Export an object to a native R object.

exportTSV Export results of an analysis in a Tab-separated values file. Work with
statistical methods provided by the package.

exportPDF Generate a summary of an object (database, analysis outputs, etc.) in
a PDF file.

exportTEX Generate the summary as a A TEXdocument.

exportHTML Generate the summary as a HTML file or save it into the clipboard. This
export is usefull for importing results in Word.

exportDOCX Generate the object summary in a DOCX document. Currently in de-
velopment.

exportSEQ Export a panelvar to a state sequence or an event sequence.

Table 4: Some key methods provided by the Rsocialdata package

21

5 Conclusion and future work

The Rsocialdata package provides an efficient and secure framework for handling complex survey data
in R. It goes beyond existing solutions by providing an extensive toolbox of methods for documenting
data, accounting for sample weights and manipulating panel data. Furthermore, tools for handling
network data are forthcoming. In this article we introduce some key functionnalities of the package. We
advice the interested reader to go the Rsocialdata website for getting more insight on the package and
its functionnalities. The website provides tutorials to learn how to use the package and benefit of its
functionnalities.

Future work will mainly concern the upgrade of the tools serving at documenting data as well as developing
front-ends for widely used statistical methods. Concerning the tools for documenting data, we work at
making the software compatible with the DDI 2.5 specification. We would like to reach out to survey data
managment experts for feedback and advices on this implementation, especially to decide which parts
of the specification are the most important to implement in the software in the perspective of handling
life course data. Concerning front-ends to statistical methods, we firstly plan to add front-ends for other
popular methods, as for example linear models (package stats, R Core Team (2012)) and clustering
(package cluster, Maechler et al. (2012)) as well as more specific methods used in life course analysis,
as survival analysis (package survival, Therneau (2012)) and structural equation modeling (package
lavaan.survey, Oberski (2012)). We also make efforts to standardize these front-ends and providing
documentation about how to set up a new front-end for another method, in order to let other package
developers able to follow the methodology we put forward in this project.

References

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone (1984). Classification and regression trees.
Monterey, CA: Wadsworth & Brooks.

Biirgin, R., G. Ritschard, and E. Rousseaux (2012). Exploration graphique de données séquentielles. In
Atelier Fouille visuelle de données : Méthodologie et évaluation. Conférence EGC2012, pp. 39-50.

Cramer, H. (1971). Mathematical Methods of Statistics. Princeton university press.
De Vries, A. (2012). surveydata: Tools to manipulate survey data. R package version 0.1-11.

Elff, M. (2013). memisc: Tools for Management of Survey Data, Graphics, Programming, Statistics and
Simulation. R package version 0.95-39.

Gabadinho, A.; G. Ritschard, N. S. Mueller, and M. Studer (2011). Analyzing and visualizing state
sequences in R with TraMineR. Journal of Statistical Software 40(4), 1-37.

Goodman, L. and W. Kruskal (1954). Measures of association for cross classifications. journal of the
American Statistical Association 37, 54-115.

Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Applied
Statistics 29(2), 119-127.

Maechler, M., P. Rousseeuw, A. Struyf, M. Hubert, and K. Hornik (2012). cluster: Cluster Analysis
Basics and Eatensions. R package version 1.14.3 — For new features, see the ’Changelog’ file (in the
package source).

Oberski, D. (2012). lavaan.survey: Complex survey structural equation modeling (SEM). R package
version 0.5.

R Core Team (2012). R: A Language and Environment for Statistical Computing. Vienna, Austria: R
Foundation for Statistical Computing. ISBN 3-900051-07-0.

R Development Core Team (2012). Writing R extensions. R Foundation for Statistical Computing,
Vienna, Austria.

Ritschard, G., J. Kellerhals, M. Olszak, and M. Sardi (1996). Path analysis with partial association
measures. Quality and Quantity 30(1), 37-60.

Rizopoulos, D. (2006). 1tm: An r package for latent variable modelling and item response theory analyses.
Journal of Statistical Software 17(5), 1-25.

22

http://www.rsocialdata.unige.ch

Rousseaux, E., D. Bolano, and G. Ritschard (2013). Dataset: An efficient and secure software framework
for handling survey data in R. In Population Days 2013, 10th edition, Brizen, Italy, pp. 44.

Somers, R. (1962). A new asymmetric measure of association for ordinal variables. American Sociological
Review, 799-811.

Stover, J. (2010). Gnu pspp: A free clone of spss. In Joint Statistical Meetings, Vancouver.

The FoRt Student Project Team (2009). CHAID: CHi-squared Automated Interaction Detection. R
package version 0.1-1.

Theil, H. (1970). On the estimation of relationships involving qualitative variables. American Journal of
Sociology, 103-154.

Therneau, T. (2012). A Package for Survival Analysis in S. R package version 2.36-14.
Therneau, T., B. Atkinson, and B. Ripley (2012). rpart: Recursive Partitioning. R package version 4.0-1.

Tschuprow, A. (1919). On the mathematical expectation of the moments of frequency distributions.
Biometrika 12, 140-169.

Vardigan, M., P. Heus, and W. Thomas (2008). Data documentation initiative: Toward a standard for
the social sciences. International Journal of Digital Curation 3(1), 107-113.

Voorpostel, M., R. Tillmann, F. Lebert, U. Kuhn, O. Lipps, V.-A. Ryser, F. Schmid, M. Rothenbuehler,
and B. Wernli (2012). Swiss Household Panel Userquide (1999-2011), Wave 13. Lausanne: FORS.

Acknowledgement

This publication results from research work is executed within the frame-
work of the Swiss National Centre of Competence in Research LIVES,

R
o | ‘ . ‘ ¢ Ny
which is financed by the Swiss National Science Foundation. The authors L | \/ ES *

are grateful to the Swiss National Science Foundation for its financial
Support, Swiss National Centre of Competence in Research

23

	Introduction
	Literature review
	Software design
	Cross-sectional data management framework

	Working with the Rsocialdata package: a user guide
	Installing and invoking the package
	Documenting a database
	Preparing data ready for analysis
	Renaming variables and variable values
	Setting weights and control variables
	Computing frequency tables
	Recoding variables

	Statistical Analysis with the Rsocialdata package
	Univariate analysis
	Bivariate analysis
	Tree-based methods
	Logistic regression

	Dealing with panel data
	Export methods

	Conclusion and future work

